Tubular photobioreactor design for algal cultures.
نویسندگان
چکیده
Principles of fluid mechanics, gas-liquid mass transfer, and irradiance controlled algal growth are integrated into a method for designing tubular photobioreactors in which the culture is circulated by an airlift pump. A 0.2 m(3) photobioreactor designed using the proposed approach was proved in continuous outdoor culture of the microalga Phaeodactylum tricornutum. The culture performance was assessed under various conditions of irradiance, dilution rates and liquid velocities through the tubular solar collector. A biomass productivity of 1.90 g l(-1) d(-1) (or 32 g m(-2) d(-1)) could be obtained at a dilution rate of 0.04 h(-1). Photoinhibition was observed during hours of peak irradiance; the photosynthetic activity of the cells recovered a few hours later. Linear liquid velocities of 0.50 and 0.35 m s(-1) in the solar collector gave similar biomass productivities, but the culture collapsed at lower velocities. The effect of dissolved oxygen concentration on productivity was quantified in indoor conditions; dissolved oxygen levels higher or lower than air saturation values reduced productivity. Under outdoor conditions, for given levels of oxygen supersaturation, the productivity decline was greater outdoors than indoors, suggesting that under intense outdoor illumination photooxidation contributed to loss of productivity in comparison with productivity loss due to oxygen inhibition alone. Dissolved oxygen values at the outlet of solar collector tube were up to 400% of air saturation.
منابع مشابه
Department of Ocean & Resources Engineering Seminar IMPROVING MASS TRANSFER IN A TUBULAR PHOTOBIOREACTOR
A modified tubular photobioreactor was constructed at the J.J. Look Laboratory. The design of this reactor was based on the Tredici-design near-horizontal tubular photobioreactors already present at this facility, but incorporated several features designed to improve mass transfer of carbon dioxide into the liquid phase, facilitate the stripping of photosynthetically produced oxygen, and improv...
متن کاملMaterials, geometry, and net energy ratio of tubular photobioreactors for microalgal hydrogen production
We estimate the energy content, the operational energy inputs, and the net energy ratio (NER) of an industrial tubular photobioreactor used for the photosynthetic production of H2 by microalgae. The calculated H2 output of the photobioreactor is based on a range of algal photosynthetic H2 generation efficiencies, and on the application of standard theory for tubular solar collectors. Small diam...
متن کاملImproving Photobioreactor wall Using Optical Brightener: Investigating the Photostability of Coated Layer and Algal Growth
In this work, photostability, absorption and emission intensity of coated polycarbonate (PC) sheets with optical brightener (OB) as a wavelength converter material have been investigated. In addition, this coated sheet was used as a wall for microalgae culture flask, as a small scale photobioreactor, for studying the spectral conversion of UV-A radiation to blue light region and its effect ...
متن کاملA Theoretical Consideration on Oxygen Production Rate in Microalgal Cultures
Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate shoul...
متن کاملOptimal intensity and biomass density for biofuel production in a thin-light-path photobioreactor.
Production of competitive microalgal biofuels requires development of high volumetric productivity photobioreactors (PBRs) capable of supporting high-density cultures. Maximal biomass density supported by the current PBRs is limited by nonuniform distribution of light as a result of self-shading effects. We recently developed a thin-light-path stacked photobioreactor with integrated slab wavegu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biotechnology
دوره 92 2 شماره
صفحات -
تاریخ انتشار 2001